Thursday, 4 October 2007

The Sun By Day

The Sun is the Solar System's parent star, and far and away its chief component. Its large mass gives it an interior density high enough to sustain nuclear fusion, which releases enormous amounts of energy, mostly radiated into space as electromagnetic radiation such as visible light.

The Sun is classified as a moderately large yellow dwarf, but this name is misleading as, compared to stars in our galaxy, the Sun is rather large and bright. Stars are classified by the Hertzsprung-Russell diagram, a graph which plots the brightness of stars against their surface temperatures. Generally, hotter stars are brighter. Stars following this pattern are said to be on the main sequence; the Sun lies right in the middle of it. However, stars brighter and hotter than the Sun are rare, while stars dimmer and cooler are common.

It is believed that the Sun's position on the main sequence puts it in the "prime of life" for a star, in that it has not yet exhausted its store of hydrogen for nuclear fusion. The Sun is growing brighter; early in its history it was 75 percent as bright as it is today.

Calculations of the ratios of hydrogen and helium within the Sun suggest it is halfway through its life cycle. It will eventually move off the main sequence and become larger, brighter, cooler and redder, becoming a red giant in about five billion years. At that point its luminosity will be several thousand times its present value.

The Sun is a population I star; it was born in the later stages of the universe's evolution. It contains more elements heavier than hydrogen and helium ("metals" in astronomical parlance) than older population II stars. Elements heavier than hydrogen and helium were formed in the cores of ancient and exploding stars, so the first generation of stars had to die before the universe could be enriched with these atoms. The oldest stars contain few metals, while stars born later have more. This high metallicity is thought to have been crucial to the Sun's developing a planetary system, because planets form from accretion of metals.

Along with light, the Sun radiates a continuous stream of charged particles (a plasma) known as the solar wind. This stream of particles spreads outwards at roughly 1.5 million kilometres per hour, creating a tenuous atmosphere (the heliosphere) that permeates the Solar System out to at least 100 AU (see heliopause). This is known as the interplanetary medium. The Sun's 11-year sunspot cycle and frequent solar flares and coronal mass ejections disturb the heliosphere, creating space weather. The Sun's rotating magnetic field acts on the interplanetary medium to create the heliospheric current sheet, the largest structure in the solar system.

Earth's magnetic field protects its atmosphere from interacting with the solar wind. Venus and Mars do not have magnetic fields, and the solar wind causes their atmospheres to gradually bleed away into space. The interaction of the solar wind with Earth's magnetic field creates the aurorae seen near the magnetic poles.

Cosmic rays originate outside the Solar System. The heliosphere partially shields the Solar System, and planetary magnetic fields (for planets which have them) also provide some protection. The density of cosmic rays in the interstellar medium and the strength of the Sun's magnetic field change on very long timescales, so the level of cosmic radiation in the Solar System varies, though by how much is unknown.
Can you believe that I took this image? Yup. Over the fourth Upper tee, the sun rose to an amazing sky...
The interplanetary medium is home to at least two disc-like regions of cosmic dust. The first, the zodiacal dust cloud, lies in the inner Solar System and causes zodiacal light. It was likely formed by collisions within the asteroid belt brought on by interactions with the planets. The second extends from about 10 AU to about 40 AU, and was probably created by similar collisions within the Kuiper belt.

No comments: